PCMI topological aspects of quantum codes, problem session \#3

Instructor: Jeongwan Haah, Teaching Assistant: John Bostanci

1. (Density Matrices and Linear Functionals.) Let $\rho_{A B}$ be a density matrix on a bipartite system and consider the linear functional on the space of Hermitian operators acting on A defined by

$$
O_{\mathrm{A}} \mapsto \operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right) .
$$

(a) Does there exists a matrix σ_{A} such that $\operatorname{Tr}\left(O_{\mathrm{A}} \sigma_{\mathrm{A}}\right)=\operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes \mathrm{id} \mathrm{id}_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right)$ for all O_{A} ?
(b) Is σ unique?
(c) How do you compute σ ?

Solution: σ_{A} is result of tracing out the B register of ρ_{AB}.
2. (Baker-Campbell-Hausdorff.) Let H and A be square matrices of the same finite dimension. Show that the following equality holds:

$$
e^{i H t} A e^{-i H t}=\sum_{k=0}^{\infty}(i t)^{k} \frac{[H, A]_{k}}{k!} .
$$

Here $[H, A]_{k}$ is the nested commutator, defined as

$$
\begin{aligned}
{[H, A]_{0} } & =A \\
{[H, A]_{k} } & =\left[H,[H, A]_{k-1}\right] .
\end{aligned}
$$

Show that the right hand side converges absolutely for any $t \in \mathbb{C}$ (i.e. taking the sum of the norms of the terms in the original sum converges) and hence both sides are complex analytic in t.
3. (Cats on a Line.) Consider a cat state, $\frac{1}{\sqrt{2}}(|0, \ldots, 0\rangle+|1, \ldots, 1\rangle)$, where the qubits are arranged on a line.
(a) Find two observables (one on each end of the line) that have non-zero correlation with each other.
(b) Prove that the cat state on a line can not be prepared in constant depth.
(c) Find a linear depth circuit using 1- and 2-qubit local gates that synthesizes the cat state.

Solution:

(a) We can take the observables to be Z on the first and last qubit. The product will always yield a +1 eigenvalue (i.e. either both 0 or both 1), but each individual one is +1 with a half probability.
(b) By a light cone argument, when we evolve by a constant depth geometrically local circuit, two observables that are separated by more than that constant apart must be un-correlated. Thus the cat state can not be prepared in constant depth.
(c) For a linear depth circuit, start by applying H to the first qubit, and then apply $C N O T$ between the i and $i+1$ 'th qubits, from $i=0$ to $i=n-1$.
4. (Twist Product.) Recall the definition of the twisted product. Given operators O_{AB} and O_{AB}^{\prime}, we can express O and O^{\prime} as a sum of tensor product operators as follows

$$
\begin{aligned}
O & =\sum_{i=0}^{k}\left(\Gamma_{i}\right)_{\mathrm{A}} \otimes\left(\Lambda_{i}\right)_{\mathrm{B}} \\
O^{\prime} & =\sum_{j=0}^{k^{\prime}}\left(\Gamma_{j}^{\prime}\right)_{\mathrm{A}} \otimes\left(\Lambda_{j}^{\prime}\right)_{\mathrm{B}}
\end{aligned}
$$

Note that the operators in the decomposition are not necessarily positive semi-definite. Then define the twist product as

$$
\begin{equation*}
O \infty O^{\prime}=\sum_{i=0}^{k} \sum_{j=0}^{k^{\prime}}\left(\Gamma_{i} \Gamma_{j}^{\prime}\right)_{\mathrm{A}} \otimes\left(\Lambda_{j}^{\prime} \Lambda_{i}\right)_{\mathrm{B}} \tag{1}
\end{equation*}
$$

(a) Show that the twist product is a bilinear map (i.e. for a fixed O^{\prime}, the map $O \mapsto O \infty O^{\prime}$ is linear, and vice-versa).
(b) Show that the twist product is well defined, independent of the choice of decomposition of O and O^{\prime} into a sum of tensor product operators.

