PCMI topological aspects of quantum codes, problem session \#1

Instructor: Jeongwan Haah, Teaching Assistant: John Bostanci

1. (CSS code cleaning lemma.) Prove a CSS code cleaning lemma: Let \mathcal{S} be a CSS code over n qubits and $M \subset \Lambda$ be a subset of qubits such that every operator supported only on M is not a non-trivial logical X operator. Then there exists a choice of representatives of all logical Z operators such that the representatives are supported on $\Lambda \backslash M$.

Solution: We are going to proceed by dimension counting. Since we are only dealing with X-type operators, take \mathcal{P}_{X} as the n-dimensional vector space over \mathbb{F}_{2}, and \mathcal{S}_{Z} to be the subspace corresponding to the Z-stabilizers of \mathcal{S}. Then consider the following direct sum decomposition of \mathcal{S} :

$$
\mathcal{S}_{Z}=\mathcal{S}_{M} \oplus \mathcal{S}_{\Lambda \backslash M} \oplus \mathcal{S}^{\prime}
$$

Here \mathcal{S}_{M} and $\mathcal{S}_{\Lambda \backslash M}$ are the subspace of operators supported only on M and $\Lambda \backslash M$ respectively, and \mathcal{S}^{\prime} is whatever is left. I am dropping the subscript Z here.
The logical Pauli X operators correspond exactly to the orthogonal subspace of \mathcal{S}_{Z}, which we will denote \mathcal{S}^{\perp}. We can denote by \mathcal{S}_{M}^{\perp} the subspace of these operators that are supported only on M, and similarly for $\mathcal{S}_{\Lambda \backslash M}^{\perp}$. Note that this is not the same as the operators that commute with \mathcal{S}_{M}. Now consider the set of operators \mathcal{S}_{M}^{\perp}. We claim the following:

$$
\operatorname{dim}\left(\mathcal{S}_{M}^{\perp}\right)=|M|-\operatorname{dim}\left(\mathcal{S}_{M}\right)-\operatorname{dim}\left(\mathcal{S}^{\prime}\right) .
$$

Imagine building out an $n \times n$ matrix, starting with the first rows being \mathcal{S}_{Z}. When we complete the other rows of the matrix, the last few (those are aren't in the rows corresponding to \mathcal{S}_{Z}) will be logical Pauli's, the question now becomes how many of those rows will we have when we cut out the $\Lambda \backslash M$ columns. We started with n rows, and recall that $\operatorname{dim}\left(\mathcal{S}_{\Lambda \backslash M}\right)$ of them correspond to stabilizers that are supported outside of M, so those become 0 when we remove the rows (and thus don't count towards restricting \mathcal{S}_{M}^{\perp}). Further note that $\left.\mathcal{S}^{\prime}\right|_{M}$ is distinct from \mathcal{S}_{M}, otherwise we could multiply operators from $\left.\mathcal{S}^{\prime}\right|_{M}$ by operators from \mathcal{S}_{M} to get an operator in $S_{\Lambda \backslash M}$, which means the original operator would be in the direct sum of the two other sets (a contradiction with how we defined the decomposition). Thus, we start with $|M|$-dimensional vectors, and have to remove $\operatorname{dim}\left(\mathcal{S}_{M}\right)$ and $\operatorname{dim}\left(\mathcal{S}^{\prime}\right)$ of them to account for the fact that they must commute with those two sets.

Now we bring in our assumption: the dimension of the set \mathcal{S}_{M}^{\perp} is actually 0 , because there are no non-trivial X-type logical Pauli's. Thus, we have

$$
\operatorname{dim}\left(\mathcal{S}_{M}\right)+\operatorname{dim}\left(\mathcal{S}^{\prime}\right)=|M|
$$

To wrap the argument up, note that the dimension of logical X Pauli's supported on $\Lambda \backslash M$ is, more simply, given by

$$
\begin{equation*}
|\Lambda \backslash M|-\operatorname{dim}\left(\mathcal{S}_{\Lambda \backslash M}\right)=n-|M|-\operatorname{dim}\left(\mathcal{S}_{\Lambda \backslash M}\right), \tag{1}
\end{equation*}
$$

because those operators have to be supported in the set, and commute with the stabilizer. Finally, let n_{X} be the dimension of logical X operators, then

$$
n-n_{X}=\operatorname{dim}\left(\mathcal{S}_{M}\right)+\operatorname{dim}\left(\mathcal{S}^{\prime}\right)+\operatorname{dim}\left(\mathcal{S}_{\Lambda \backslash M}\right)
$$

Rearranging, we get

$$
\operatorname{dim}\left(\mathcal{S}_{\Lambda \backslash M}\right)=n-n_{X}-|M|
$$

Substituting into eq. (1), we get that the number of logical X operators supported only on $\Lambda \backslash M$ is given by

$$
n-|M|-n-n_{X}-|M|=n_{X}
$$

Thus, a full set of logical X operators is supported in $\Lambda \backslash M$.
2. (Finishing up the quantum Singleton bound.) In the proof of the quantum Singleton bound, show that for two parties that share a bipartite state ρ_{AB}, if for all pairs of Hermitian operators $O_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{B}}, \mathrm{id}_{\mathrm{A}} \otimes O_{\mathrm{B}}$,

$$
\begin{equation*}
\operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes O_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right)=\operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right) \cdot \operatorname{Tr}\left(\left(\operatorname{id}_{\mathrm{A}} \otimes O_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right), \tag{2}
\end{equation*}
$$

then their mutual information is 0 .
Solution: Recall that the mutual information is given by

$$
I(A ; B)=H(A)-H(A \mid B)
$$

where $H(A)$ is the Shannon entropy of the random variable. Thus, we just need to show that $H(A \mid B)=H(A)$, but we know that

$$
\begin{aligned}
\operatorname{Pr}[A=a \mid B=b] & =\frac{\operatorname{Pr}[A=a \& B=b]}{\operatorname{Pr}[B=b]} \\
& =\frac{\operatorname{Pr}[A=a] \operatorname{Pr}[B=b]}{\operatorname{Pr}[B=b]} \\
& =\operatorname{Pr}[A=a] .
\end{aligned}
$$

Thus when we compute the conditional entropy, we will get the same number, and the mutual information will be 0 .
3. (Subadditivity and Nonnegativity.) Recall the definition of the von Neumann entropy, $S(\rho)=-\operatorname{Tr}(\rho \ln \rho)=-\sum_{j} \lambda_{j} \ln \left(\lambda_{j}\right)$, where λ_{j} is the j 'th eigenvalue of ρ, let ρ_{AB} be a density matrix over registers A and B. Show that the Von Neumann entropy satisfies

$$
S\left(\rho_{\mathrm{AB}}\right) \leq S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right)
$$

Solution: We first show that for two states $\rho=\sum_{i} p_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ and $\sigma=\sum_{j} q_{j}\left|w_{j}\right\rangle\left\langle w_{j}\right|$,

$$
\begin{aligned}
S(\rho \otimes \sigma) & =S\left(\sum_{i, j} p_{i} q_{j}\left|v_{i} w_{j}\right\rangle\left\langle v_{i} w_{j}\right|\right) \\
& =-\sum_{i, j} p_{i} q_{j} \ln \left(p_{i} q_{j}\right) \\
& =-\sum_{i, j} p_{i} q_{j} \ln \left(p_{i}\right)-\sum_{i, j} p_{i} q_{j} \ln \left(q_{j}\right) \\
& =S(\rho)+S(\sigma)
\end{aligned}
$$

Here the last line uses the fact that p_{i} and q_{j} sum to 1 . To prove the theorem, we consider the following

$$
\begin{aligned}
0 & \leq S\left(\rho_{\mathrm{AB}} \| \rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}\right) \\
& =\operatorname{Tr}\left(\rho_{\mathrm{AB}}\left(\ln \left(\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}\right)-\ln \left(\rho_{\mathrm{AB}}\right)\right)\right. \\
& =S\left(\rho_{\mathrm{AB}}\right)-\operatorname{Tr}\left(\rho_{\mathrm{AB}}\left(\ln \left(\rho_{\mathrm{A}} \otimes \rho_{\mathrm{B}}\right)\right)\right) \\
& =S\left(\rho_{\mathrm{AB}}\right)-\operatorname{Tr}\left(\rho_{\mathrm{AB}}\left(\ln \left(\rho_{\mathrm{A}}\right) \otimes \mathrm{id}_{\mathrm{B}}+\operatorname{id}_{\mathrm{A}} \otimes \ln \left(\rho_{\mathrm{B}}\right)\right)\right) \\
& =S\left(\rho_{\mathrm{AB}}\right)-S\left(\rho_{\mathrm{A}}\right)-S\left(\rho_{\mathrm{B}}\right) .
\end{aligned}
$$

The first 3 lines are the definition of the quantum relative entropy, and rearranging terms. Then we apply the identity $\ln (\rho \otimes \sigma)=\ln (\rho) \otimes \mathrm{id}+\mathrm{id} \otimes \ln (\sigma)$. Then we use the fact that for two states ρ and $\sigma, \operatorname{Tr}\left(\rho_{\mathrm{AB}}\left(\sigma_{\mathrm{A}} \otimes \operatorname{id}_{\mathrm{B}}\right)\right)=\operatorname{Tr}\left(\rho_{\mathrm{A}} \sigma_{\mathrm{A}}\right)$.
4. (Codes on non-orientable surfaces.) We have bounded the number of logical qubits on any code defined on a two-dimensional torus by dividing the torus into three regions, two of which are correctable. Each correctable region is a union of two disk-like regions where the r-neighborhood of any one of the disk-like regions is also disk-like. Under the same assumption on correctable regions, bound the number of logical qubits of codes on $\mathbb{R} P^{2}$. Can you generalize it to higher demigenus nonorientable surfaces?

3 Hint: You may assume that the quantum relative entropy, defined below, is always nonnegative:

$$
S(\rho \| \sigma)=\operatorname{Tr}(\rho(\ln \sigma-\ln \rho))
$$

4 Hint: A region does not have to be the union of two subregions. There can be more.

