
PCMI topological aspects of quantum codes, problem session #1

Instructor: Jeongwan Haah, Teaching Assistant: John Bostanci

1. (CSS code cleaning lemma.) Prove a CSS code cleaning lemma: Let S be a
CSS code over n qubits and M ⊂ Λ be a subset of qubits such that every operator
supported only on M is not a non-trivial logical X operator. Then there exists a choice
of representatives of all logical Z operators such that the representatives are supported
on Λ \M .

Solution: We are going to proceed by dimension counting. Since we are only dealing
with X-type operators, take PX as the n-dimensional vector space over F2, and SZ to be
the subspace corresponding to the Z-stabilizers of S. Then consider the following direct
sum decomposition of S:

SZ = SM ⊕ SΛ\M ⊕ S ′ .

Here SM and SΛ\M are the subspace of operators supported only on M and Λ \M respec-
tively, and S ′ is whatever is left. I am dropping the subscript Z here.

The logical Pauli X operators correspond exactly to the orthogonal subspace of SZ , which
we will denote S⊥. We can denote by S⊥

M the subspace of these operators that are supported
only on M , and similarly for S⊥

Λ\M . Note that this is not the same as the operators that

commute with SM . Now consider the set of operators S⊥
M . We claim the following:

dim(S⊥
M) = |M | − dim(SM)− dim(S ′) .

Imagine building out an n × n matrix, starting with the first rows being SZ . When we
complete the other rows of the matrix, the last few (those are aren’t in the rows corre-
sponding to SZ) will be logical Pauli’s, the question now becomes how many of those rows
will we have when we cut out the Λ \ M columns. We started with n rows, and recall
that dim(SΛ\M) of them correspond to stabilizers that are supported outside of M , so
those become 0 when we remove the rows (and thus don’t count towards restricting S⊥

M).
Further note that S ′|M is distinct from SM , otherwise we could multiply operators from
S ′|M by operators from SM to get an operator in SΛ\M , which means the original operator
would be in the direct sum of the two other sets (a contradiction with how we defined
the decomposition). Thus, we start with |M |-dimensional vectors, and have to remove
dim(SM) and dim(S ′) of them to account for the fact that they must commute with those
two sets.

Now we bring in our assumption: the dimension of the set S⊥
M is actually 0, because there

are no non-trivial X-type logical Pauli’s. Thus, we have

dim(SM) + dim(S ′) = |M |

. To wrap the argument up, note that the dimension of logical X Pauli’s supported on
Λ \M is, more simply, given by

|Λ \M | − dim(SΛ\M) = n− |M | − dim(SΛ\M) , (1)
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because those operators have to be supported in the set, and commute with the stabilizer.
Finally, let nX be the dimension of logical X operators, then

n− nX = dim(SM) + dim(S ′) + dim(SΛ\M) .

Rearranging, we get
dim(SΛ\M) = n− nX − |M | .

Substituting into eq. (1), we get that the number of logical X operators supported only on
Λ \M is given by

n− |M | − n− nX − |M | = nX .

Thus, a full set of logical X operators is supported in Λ\M .

2. (Finishing up the quantum Singleton bound.) In the proof of the quantum
Singleton bound, show that for two parties that share a bipartite state ρAB, if for all
pairs of Hermitian operators OA ⊗ idB, idA ⊗OB,

Tr((OA ⊗OB)ρAB) = Tr((OA ⊗ idB)ρAB) · Tr((idA ⊗OB)ρAB), (2)

then their mutual information is 0.

Solution: Recall that the mutual information is given by

I(A;B) = H(A)−H(A|B) ,

where H(A) is the Shannon entropy of the random variable. Thus, we just need to show
that H(A|B) = H(A), but we know that

Pr[A = a|B = b] =
Pr[A = a & B = b]

Pr[B = b]

=
Pr[A = a]Pr[B = b]

Pr[B = b]

= Pr[A = a] .

Thus when we compute the conditional entropy, we will get the same number, and the
mutual information will be 0.

3. (Subadditivity and Nonnegativity.) Recall the definition of the von Neumann
entropy, S(ρ) = −Tr(ρ ln ρ) = −

∑
j λj ln(λj), where λj is the j’th eigenvalue of ρ, let

ρAB be a density matrix over registers A and B. Show that the Von Neumann entropy
satisfies

S(ρAB) ≤ S(ρA) + S(ρB).
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Solution: We first show that for two states ρ =
∑

i pi |vi⟩⟨vi| and σ =
∑

j qj |wj⟩⟨wj|,

S(ρ⊗ σ) = S(
∑
i,j

piqj |viwj⟩⟨viwj|)

= −
∑
i,j

piqj ln(piqj)

= −
∑
i,j

piqj ln(pi)−
∑
i,j

piqj ln(qj)

= S(ρ) + S(σ) .

Here the last line uses the fact that pi and qj sum to 1. To prove the theorem, we consider
the following

0 ≤ S(ρAB∥ρA ⊗ ρB)

= Tr(ρAB(ln(ρA ⊗ ρB)− ln(ρAB))

= S(ρAB)− Tr(ρAB(ln(ρA ⊗ ρB)))

= S(ρAB)− Tr(ρAB(ln(ρA)⊗ idB + idA ⊗ ln(ρB)))

= S(ρAB)− S(ρA)− S(ρB) .

The first 3 lines are the definition of the quantum relative entropy, and rearranging terms.
Then we apply the identity ln(ρ⊗ σ) = ln(ρ)⊗ id+ id⊗ ln(σ). Then we use the fact that
for two states ρ and σ, Tr(ρAB(σA ⊗ idB)) = Tr(ρAσA).

4. (Codes on non-orientable surfaces.) We have bounded the number of logical
qubits on any code defined on a two-dimensional torus by dividing the torus into three
regions, two of which are correctable. Each correctable region is a union of two disk-like
regions where the r-neighborhood of any one of the disk-like regions is also disk-like.
Under the same assumption on correctable regions, bound the number of logical qubits
of codes on RP 2. Can you generalize it to higher demigenus nonorientable surfaces?

3 Hint: You may assume that the quantum relative entropy, defined below, is always non-
negative:

S(ρ∥σ) = Tr(ρ(lnσ − ln ρ)).

4 Hint: A region does not have to be the union of two subregions. There can be more.
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