PCMI topological aspects of quantum codes, problem session \#1

Instructor: Jeongwan Haah, Teaching Assistant: John Bostanci

1. (CSS code cleaning lemma.) Prove a CSS code cleaning lemma: Let \mathcal{S} be a CSS code over n qubits and $M \subset \Lambda$ be a subset of qubits such that every operator supported only on M is not a non-trivial logical X operator. Then there exists a choice of representatives of all logical Z operators such that the representatives are supported on $\Lambda \backslash M$.
2. (Finishing up the quantum Singleton bound.) In the proof of the quantum Singleton bound, show that for two parties that share a bipartite state ρ_{AB}, if for all pairs of Hermitian operators $O_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{B}}, \mathrm{id}_{\mathrm{A}} \otimes O_{\mathrm{B}}$,

$$
\begin{equation*}
\operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes O_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right)=\operatorname{Tr}\left(\left(O_{\mathrm{A}} \otimes \mathrm{id}_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right) \cdot \operatorname{Tr}\left(\left(\mathrm{id}_{\mathrm{A}} \otimes O_{\mathrm{B}}\right) \rho_{\mathrm{AB}}\right), \tag{1}
\end{equation*}
$$

then their mutual information is 0 .
3. (Subadditivity and Nonnegativity.) Recall the definition of the von Neumann entropy, $S(\rho)=-\operatorname{Tr}(\rho \ln \rho)=-\sum_{j} \lambda_{j} \ln \left(\lambda_{j}\right)$, where λ_{j} is the j 'th eigenvalue of ρ, let ρ_{AB} be a density matrix over registers A and B. Show that the Von Neumann entropy satisfies

$$
S\left(\rho_{\mathrm{AB}}\right) \leq S\left(\rho_{\mathrm{A}}\right)+S\left(\rho_{\mathrm{B}}\right) .
$$

4. (Codes on non-orientable surfaces.) We have bounded the number of logical qubits on any code defined on a two-dimensional torus by dividing the torus into three regions, two of which are correctable. Each correctable region is a union of two disk-like regions where the r-neighborhood of any one of the disk-like regions is also disk-like. Under the same assumption on correctable regions, bound the number of logical qubits of codes on $\mathbb{R} P^{2}$. Can you generalize it to higher demigenus nonorientable surfaces?

3 Hint: You may assume that the quantum relative entropy, defined below, is always nonnegative:

$$
S(\rho \| \sigma)=\operatorname{Tr}(\rho(\ln \sigma-\ln \rho))
$$

4 Hint: A region does not have to be the union of two subregions. There can be more.

